
TicTacToeFlight (V1.0)

Flight created on 10.01.2025

Estimated flight duration 15-30 min.

Difficulty level: Easy

Task: Play Tic Tac Toe with any airplane.

Introduction:

Lockheed Martin has included a “Tic-Tac-Toe Script Example” with

the flight simulator.

This example is

- graphically not very appealing,

- you play against yourself (no computer opponent) and

- you simply stand on the runway while playing.

That's why I wanted to find out whether Tic Tac Toe can also be

- in “nice”,

- with an “AI” as opponent and

- the whole thing as a flight.

I had a few problems to solve:

1) I can't script, so the game has to do without scripts. Is it

possible to realize the project with actions, areas, triggers and

objects only?

2) How do I create the playing field and the game pieces without

creating additional scenario objects, which have to be installed

separately for the mission?

3) How do I find out which field is occupied by the player and

which by the AI?

4) How do I find out whether the player or the AI has won?

5) How do I tell the AI that it is its turn?

6) How do I “program” an (albeit simple) AI, using only actions,

areas, triggers and objects?

7) How do I program an intelligent AI? There are many different

game situations that the AI has to recognize / query in order not

to lose.

8) How do I differentiate between simple and intelligent AI after

starting the game?

If you are interested, you can read my solution to the problems

below.

The playing field:

Everyone should be familiar with how Tic Tac Toe is played.

The player's token is an X, the AI's is a ■.

This flight - Tic Tac Toe has a special feature:

You can see the playing field from two sides.

From the other side, all the tiles already placed are mirror-

inverted.

So you have to “rethink” after turning them over.

You can fly through the playing field from both sides, here are

two possible flight routes:

1) Fly one lap around the playing field and always approach from

the same side.

2) Turn 180° after each pass and approach the field again.

The start of the game:

1)At the beginning, you choose the AI's playing strength.

In “Easy” mode you can win, in “Hard” mode the maximum possible

score is a draw.

2) You then have 10 seconds to change aircraft.

Choose any aircraft, helicopters and gliders are also allowed (see

below).

3) The game lasts 5 rounds, the first player to occupy 3 squares

in a row, column or diagonal wins a round.

A display at the top right shows the current score.

4) Do not touch the field lines.

The collision does not damage the airplane, but the round is lost

if you touch it.

That's why you have to approach very precisely with large

airplanes. An outside view can be helpful.

5) The player begins the first round. Start and fly through any

field for the first turn.

The choice of aircraft:

F16:

If you want to stay with the F16, you must make the machine ready

for take-off.

To do this, select Vehicle/InstrumentPanel/EngineState in the

menu:

Choose Ready to Fly!

Glider:

When a glider is selected, it automatically recognizes the game

(on the missing engine) and activates thermals.

(The thermals are not activated in gliders with an auxiliary

engine, so choose a “pure glider” first, after activating the

thermals you can also switch to a glider with an auxiliary

engine).

To take off with a glider, you must request a tow plane with

Shift+Ctrl+Y.

Let yourself be towed to a suitable height and release from the

tow plane with Shift+Y.

You don't have to worry about running out of updrafts:

- The entire area around the field is covered by a base thermal,

which extends up to 500 feet above the ground.

- There are thermals in front of and behind the field, with

medium-strong updrafts.

- To the left and right of the field are thermals with strong

updrafts.

Shown here with green frames for clarity.

You will recognize the thermals by flocks of birds.

Large airplanes:

The playing field is large enough for you to play with the largest

aircraft, the AN225.

How I created the game:

1) I can't script, so the game has to do without scripts. Is it

possible to realize the project with actions, areas, triggers and

objects only?

The whole game is really created without scripts. Only 944 objects

were necessary, I have already created missions with 2000 objects.

However, in Tic Tac Toe there are many more links between the

individual objects than usual.

Grouped together, it is still reasonably clear:

Ungrouped, however, it looks bad:

Detail (red rectangle from the picture above):

2) How do I create the playing field and the game pieces without

creating additional scenario objects that have to be installed

separately for the mission?

I simply created the playing field with color-filled areas. To

illustrate this, here are 2 bars with outlines only.

The game pieces are created in the same way.

2 areas are used for an X.

So that the player can understand which move the AI is currently

making, the ■ is displayed “flashing” (white, gray, black).

One problem since P3dV5 is that I can't make the areas

“invisible” by setting the color to transparent; a wafer-thin

outline always remains visible. Only colorless areas are really

invisible. So I placed colorless areas in the playing field (shown

in red in the image below). Using ChangeObjectPlacementAction, a

token that I have sunk (hidden) in the ground is moved to the

position of the colorless area if required. At the end of a round,

the tiles placed in the playing field are removed, i.e. hidden in

the ground again.

The areas shown in green are colorless and are used to query which

field the player is flying through using a proximity trigger. As

soon as the proximity trigger is triggered, the area is removed

and replaced by another area, which then triggers a text when

flying through (The field is already occupied). Because the AI

does not fly through a field for a turn, this area must also be

replaced when activating a ■.

Sounds complicated? It is, at least if you have to develop it

yourself.

3) How do I find out which field is occupied by the player and

which by the AI?

So far I only know which field is occupied, but not yet by whom.

That was a big problem, because I can query this with

PropertyTrigger, but I need 2x9 parameters that I can change and

query. At first I thought of airplane lights, but different

airplanes have different (or not all) lights, which I need. Also,

there are no 18 lights, other parameters are hard to find and even

if there were, the player could win by activating panel, strobe

and landing.

Finally I had the solution:

You can not only manipulate the lights of the player plane, but

also that of each AI plane.

So I placed 2 AI airplanes, which are available in all P3d

versions (4/5/6), at the airport.

Each playing field is assigned the same light for both aircraft.

Now I activate the corresponding light for the respective aircraft

as required (using SetPropertyAction).

Here is the allocation of the lights:

I now use PropertyTrigger to query which fields are occupied by

whom.

In this example, the logic queries whether in the diagonal (from

top left to bottom right), fields 5 and 9 are occupied by the AI

and field 1 is not occupied by the player. If this is the case,

the AI places its token in field 1 and wins.

4) How do I query whether the player or the AI has won?

As in the example above, I use PropertyTrigger again.

Only 3 queries are required (AI, player, draw), but the logic for

the queries is more extensive, up to 81 logic elements are

required.

It is evaluated horizontally, vertically and diagonally whether

the AI occupies all 3 fields.

In the event of a draw, the query is slightly different, but

basically the same:

You are asked whether all 9 fields are occupied, regardless of

whether they are occupied by the AI or the player.

5) How do I tell the AI that it is its turn?

So that the AI “knows” when it is its turn, I could simply

activate the AI every time the player occupies a square.

Unfortunately, it's not that simple, because there are situations

in which the AI shouldn't make a move, e.g. when the player has 3

in a row, i.e. wins.

Therefore, after the player move, it must first be evaluated

whether the game has been won or whether all squares are already

occupied (= draw).

Therefore, a player move activates the playing field evaluation

and a proximity action (called AI move), which triggers the AI

move when leaving (OnExit) the associated area “AI move”.

By the way:

Why so complicated, you could start the AI move after completing

the board evaluation?

That doesn't work because the board evaluation is also started

after every AI move. So another AI move would be triggered all the

time and the player would never get a turn.

Ok, if you mean that you could do 2 field evaluations, one for the

player and one for the AI, you are right, but 183 objects are

required for the evaluation.

As already mentioned, start the board evaluation and proximity

action, as soon as the board evaluation has neither shown “Player

has won” nor “Draw”, it triggers the removal of the AI move

area.

Removing the area works in the same way as placing the tiles; the

area is simply moved to a different location.

Because the proximity action reacts to leaving (On Exit), moving

the area to a different location is the same as leaving the area.

If the evaluation shows that the player has won or there are no

free spaces, the ProximityAction (AI move) is deactivated.

Deactivation means that no AI move is triggered when leaving the

associated area.

Incidentally, the area is so large that the player will not leave

it, even if he flies with a fighter jet at full speed.

Initially I had planned the area so that it would be left after

0.5 seconds of flight, but this caused further problems, e.g. if

you fly with a helicopter and are not far away from the playing

field, or fly out of the area with a fighter jet at full speed

before the evaluation is finished.

6) How do I “program” an (albeit simple) AI with actions, areas,

triggers and objects alone?

As soon as it is the AI's turn, a RandomAction is triggered.

This action randomly selects one of the 9 fields and activates two

property triggers (free/occupied).

If “Free”, the AI occupies the field; if “Occupied”, the

RandomAction is triggered again.

For some unknown reason, this only worked in 95% of cases, so I

triggered the RandomAction again with a 0.5s delay. If the field

is free, this delayed action is deactivated immediately.

The logic of “Free” is quite simple:

It is queried whether Light Taxi is switched off for AI and player

airplane (Constant=0).

The logic of “Occupied” is corresponding:

It is queried whether Light Taxi is switched on for the AI or

player aircraft (Constant=1).

Individually this looks clear, but if you do this with all 9

fields and link them accordingly, 65 objects are required:

AI-Light chooses a free field at random, how do I make the AI

intelligent?

7) How do I program an intelligent AI? There are many different

game situations that the AI has to recognize / query in order not

to lose.

The intelligent AI was a big challenge.

Especially move 2 was difficult to realize.

Because it is precisely move 2 that decides whether the AI can

win.

But first things first:

1st move AI: Here it is simply asked whether field 5 (the middle

one) is occupied, if no, the field is occupied by the AI, if

occupied, field 1, 3, 7, or 9 is randomly occupied.

The associated logic is correspondingly simple:

Turn 2: Now it gets complicated. The AI does not know whether the

player or the AI has started. A query as to whether field 5

belongs to the AI is not meaningful, because the player may have

started with any other field and the AI only responded with field

5 on the first move.

- If field 5 is occupied by the player, the further moves are

simple: The AI simply asks whether the player has occupied 2

fields in a row and the 3rd field is free. So this 3rd square is

occupied.

- If field 5 is occupied by the AI, it is possible that the player

has already made one or two moves. For this reason, the system

first checks whether only 1 field (on fields 1,2,3,4,6,7,8,9) is

occupied.

This is one of 8 logics, here you are asked whether Wing (field 9)

is occupied and all other 7 are free:

If one of the logics strikes, one of 2 answer fields is selected

at random, in the above example field 3 or 7.

If no logic strikes, all possible combinations of 2 fields (on

fields 1,2,3,4,6,7,8,9) must be queried.

Therefore, a query is first run after 2 squares occupied by the

player in a row (horizontal, vertical and diagonal).

From now on, this query is run for every further move, by the way,

there are 56 objects:

The logic looks like this. Here, one of 3 variants is queried in

the upper horizontal row:

Wenn eine der Logiken anschlägt, wird das 3. Feld belegt.

Wenn keine Logik anschlägt, müssen die übrigen möglichen

Kombinationen abgefragt werden, z.b. Feld 1 und 8 belegt, in

diesem Fall wird per Random Feld 4, oder 7 belegt.

Diese Abfrage benötigt weitere 56 Objekte:

Here is a detailed view:

3. Zug: Ab hier wird es einfacher, denn die Züge 3 bis 5 laufen

alle gleich ab:

Zuerst wird abgefragt, ob die KI 2 Felder in einer Reihe belegt

und das 3. Feld frei ist.

54 Objekte wurden dafür benötigt:

The logic looks like this:

If one of the logics is successful, the 3rd field is occupied and

the AI wins.

If none of the logics are triggered, the query already used in

turn 2 is started.

If 2 squares are occupied by the player, the AI takes the 3rd

square to prevent the player from winning.

If none of the logic works, the random action of the “simple AI”

is started, i.e. any free square is occupied, because a victory is

no longer possible.

There was only 1 problem left to solve: How do I count the moves?

The AI must know whether it is making move 1, 2 or 3 so that the

correct logic sequence is queried.

You could take 3 CounterTriggers, one counts to 1, one to 2, and

the third to 3. Before each move you give all 3 counters a “tick”

(the counters increase by 1 each time), and fire when the

appropriate value is reached.

The problem with the CounterTriggers is that you cannot set them

back to zero. That's why they can't be used, because they have to

be reset after every game round.

After a lot of tinkering, I came up with TimeTrigger as an

alternative.

3 timers (one with 0.1s, one with 0.5s and one with 1s) are

started before the AI move.

- The 0.1s timer starts first and immediately stops all 3 timers.

Then 1000s are added to the 0.1s trigger so that it does not fire

the next time. Move 1 is started.

- Before the next move, the 3 timers are started again, this time

the 0.5s timer fires, etc.

8) How do I differentiate between simple and intelligent AI after

starting the game?

Using the same method as for counting the moves (above), I have

created 2 TimeTrigger triggers.

Both timers are set to 0.1s. At the start of the game, a choice is

made between easy and hard, which results in 1000s being added to

the other timer.

Each time it is the AI's turn, both timers are started. Logically,

the timer starts at 0.1s, switches off both timers and resets

itself so that it is ready again at 0.1s for the next query. It

then fires the appropriate AI (simple or intelligent).

I realize that the above descriptions are not complete.

The evaluation of who won, how the score display works,

integration of the goal, etc. are still missing.

But with these descriptions you understand the principle behind it

and if you want to know more, you can now open this mission in

SimDirector and analyze it.

I hope you enjoyed this flight, if so please give feedback to

p3d@andi20.ch . Also send error messages (spelling mistakes, wrong

information, etc.) to p3d@andi20.ch, I appreciate any feedback.

